欢迎来到58原创网网
更新日期:2025-07-21 14:59
写作核心提示:
写一篇关于祖冲之读书笔记的作文,需要注意以下事项:
1. 确定主题:首先,明确作文的主题,即祖冲之的哪些方面值得你学习或探讨。可以围绕祖冲之的数学成就、科学精神、人生观等方面展开。
2. 收集资料:在写作之前,广泛收集关于祖冲之的资料,包括他的生平、事迹、数学成就、科学贡献等。可以通过查阅书籍、网络资源、历史文献等途径获取信息。
3. 突出重点:在作文中,要突出祖冲之的亮点和特点,如他的数学才华、科学精神、创新意识等。可以结合具体事例来阐述,使文章更具说服力。
4. 结构清晰:作文要有明确的结构,一般包括引言、正文和结尾。引言部分简要介绍祖冲之,正文部分阐述他的成就和特点,结尾部分总结全文,提出自己的感悟。
5. 语言表达:在写作过程中,注意语言表达的准确性和流畅性。使用恰当的词汇和句式,使文章更具文采。同时,注意避免语法错误和错别字。
6. 引用资料:在作文中引用资料时,要注明出处,确保学术规范。可以引用历史文献、专家观点等,以增强文章的可信度。
7. 感悟与启示:在作文的结尾部分,要结合自己的实际,谈谈从
卡耐基在《女人的格局决定结局》中说:“找到属于自己的风格,你需要勇气来坚持自我。不要做依靠别人才能过好日子的公主,而是要做自己生活的主人,当一个有风格的女王。
由此可见,坚持做自己,不刻意迎合别人的重要性。
坚持做自己的出处
祖冲之是我国南北朝杰出的科学家。他在读古人著作时,并不盲目相信。而是独立思考,大胆提出疑问,并解决问题。
由于他的努力,他的学术不但超过了前人,而且登上了当时科学的高峰。
特别是在数学方面,他把圆周率计算到了小数点后七位数,不但超越了我国古人,而且比欧洲人先进了1000多年。
祖冲之的例子
不单是祖冲之,很多成功人士都有艰强和持之以恒的信念,正是这份执着,冷静,促使他们更加成功。例如,撒切尔夫人,林肯总统等,我就不一一列举了
我在这里要讲的是,我决心在读书笔记分享领域坚持的事。
读书笔记分享是我喜欢的事,是我深思熟虑的结果。它不仅是简单的分享,而且能倒逼我读书。
我既然定了这个目标,就不能又想别的,面面俱到。因为我既没有这个能力,也没有这么多精力。
我只想做个“努力人”,在自己的垂直领域深挖,深挖,再深挖。
直到有一天,泉眼里冒出智慧,才能……
“谁有历尽千辛万苦的意志,谁就能达到任河目的。”这是米南德说的。
愿我们每个人都坚持做自己,努力奋斗,闯出一片属于自己的蓝天!
祖冲之是世界上第一个把圆周率的准确数值计算到小数点以后七位数字的人。直到一千年后,这个记录才被阿拉伯数学家阿尔·卡西和法国数学家维叶特所打破。
祖冲之提出的它研究和计算的结果,证明圆周率应该在3.1415926和3.1415927之间,也是直到一千年以后,才由德国称之为“安托尼兹率”,还有别有用心的人说祖冲之圆周率是在明朝末年西方数学传入中国后伪造的,这是有意的捏造。
记载祖冲之对圆周率研究情况的古籍是成书于唐代的史书《隋书》,而现传的《隋书》有元朝大德丙午年(公元1306年)的刊本,其中就有和其他现传版本一样的关于祖冲之圆周率的记载,事在明朝末年前三百余年。而且还有不少明朝之前的数学家在自己的著作中引用过祖冲之的圆周率,这些事实都证明了祖冲之在圆周率研究方越的成就。
那么,祖冲之是如何取得这样重大的科学成就呢?可以肯定,他的成就是建立在前人研究的基础之上的。从当时的数学水平来看,祖冲之很可能是继承了刘徽所创立和面卓首先使用的割圆术,并且加以发展,因此获得了超越前人的重大成就。
在前面,我们提到割圆术时已经知道了这样的结论:圆内接正n边形的边数越多,各边长的总和就越接近圆周的实际长度。但因为它是内接的,又不可能把边数增加到无限多,所以边长总和永远小于圆周。
祖冲之按照刘徽的割圆术之法,设了一个直径为一丈的圆,在圆内切割计算。当他切割到圆的内接一百九十二边形时,得到了“徽率”的数值。但他没有满足,继续切割,作了三百八十四边形、七百六十八边形……一直切割到二万四千五百七十六边形,依次求出每个内接正多边形的边长。最后求得直径为一丈的圆,它的圆周长度在三丈一尺四寸一分五厘九毫二秒七忽到三丈一尺四寸一分五厘九毫二秒六忽之间,上面的那些长度单位我们现在已不再通用,但换句话说:如果圆的直径为1,那么圆周小于3.1415927、大大不到千万分之一,它们的提出,大大方便了计算和实际应用。
要作出这样精密的计算,是一项极为细致而艰巨的脑力劳动。我们知道,在祖冲之那个时代,算盘还未出现,人们普遍使用的计算工具叫算筹,它是一根根几寸长的方形或扁形的小棍子,有竹、木、铁、玉等各种材料制成。
通过对算筹的不同摆法,来表示各种数目,叫做筹算法。如果计算数字的位数越多,所需要摆放的面积就越大。用算筹来计算不象用笔,笔算可以留在纸上,而筹算每计算完一次就得重新摆动以进行新的计算;只能用笔记下计算结果,而无法得到较为直观的图形与算式。
因此只要一有差错,比如算筹被碰偏了或者计算中出现了错误,就只能从头开始。要求得祖冲之圆周率的数值,就需要对九位有的小数进行15927加、减、乘、除和开方运算等十多个步骤的计算,而每个步骤都要反复进行十几次,开方运算有50次,最后计算出的数字达到小数点后十六、七位。
今天,即使用算盘和纸笔来完成这些计算,也不是一件轻而易举的事。让我们想一想,在一千五百多年前的南朝时代,一位中年人在昏暗的油灯下,手中不停地算呀、记呀,还要经常地重新摆放数以万计的算筹,这是一件多么艰辛的事情,而且还需要日复一日地重复这种状态,一个人要是没有极大的毅力,是绝对完不成这项工作的。
这一光辉成就,也充分反映了我国古代数学高度发展的水平。祖冲之,不仅受到中国人民的敬仰,同时也受到世界各国科学界人士的推崇。1960年,苏联科学家们在研究了月球背面的照片以后,用世界上一些最有贡献的科学家的名字,来命名那上面的山谷,其中有一座环形山被命名为“祖冲之环形山”。
祖冲之在圆周率方面的研究,有着积极的现实意义,适应了当时生产实践的需要。他亲自研究过,并用最新的圆周率成果修正古代的量器容积的计算。
古代有一种量器叫做“釜”,一般的是一尺深,外形呈圆柱状,那这种量器的容积有多大呢?要想求出这个数值,就要用到圆周率。祖冲之利用他的研究,求出了精确的数值。
他还重新计算了汉朝刘歆所造的“律嘉量”(另一种量器,与上面提到的 都是类似于现在我们所用的“升”等量器,但它们都是圆柱体。),由于刘歆所用的计算方法和圆周率数值都不够准确,所以他所得到的容积值与实际数值有出入。祖冲之找到他的错误所在,利用“祖率”校正了数值。为人们的日常生活提供了方便。
以后,人们制造量器时就采用了祖冲之的“祖率”数值。祖冲之在前人的基础上,经过刻苦钻研,反复演算,将圆周率推算至小数点后7位数,并得出了圆周率分数形式的近似值。
祖冲之究竟用什么方法得出这一结果,现在无从查考;如果设想他按刘徽的“割圆术”方法去求的话,就要计算到圆内接16000多边形,这需要花费多少时间和付出多么巨大的劳动啊!
据《隋书·律历志》记载,祖冲之以一忽(一丈的一亿分之一)为单位,求直径为一丈的圆的周长,求得盈数为3.1415927、肭数为3.1415926,圆周率的真值介于盈肭两数之间。
《隋书度量衡》没有具体说明祖冲之是用什么方法计算出盈肭两数的。一般认为,祖冲之采用的是刘徽的割圆术,但也有别的多种猜测。这两个近似值准确到小数第7位,是当时世界上最先进的成就。
直到一千多年以后,15世纪阿拉伯数学家卡西和16世纪法国数学家F.韦达才得到更精确的结果。祖冲之确定了π的两个渐近分数,约率22/7和密率355/113。
其中密率355/113(≈3.1415929)西方直到16世纪才由德国人V.奥托发现。它是三个成对奇数113355再折两段组成,优美、规整、易记。为了纪念祖冲之的杰出贡献,有些外国数学史家把圆周率π的密率叫做“祖率”。
祖冲之在数学领域的成就,只是中国古代数学成就的一个方面。实际上,14世纪以前中国一直是世界上数学最为发达的国家之一。比如几何中的勾股定理,在中国早期的数学专著《周髀算经》(大约于公元前2世纪成书)中即有论述;成书于公元1世纪的另一本重要的数学专著《九章算术》,在世界数学史上最早提出负数概念及正负数加减法法则;13世纪时,中国就已经有了十次方程的解法,而直到16世纪,欧洲才提出三次方程的解法。(来源|今日)
本站部分资源搜集整理于互联网或者网友提供,仅供学习与交流使用,如果不小心侵犯到你的权益,请及时联系我们删除该资源。